Newton-Raphson - определение. Что такое Newton-Raphson
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Newton-Raphson - определение

ALGORITHM FOR FINDING A ZERO OF A FUNCTION
Newtons method; Newton-Raphson method; Newton-Raphson; Newton-raphson method; Newton-Raphston; Newton method; Newton-Raphson Algorithm; Newton-Rapson Method; Newton-Rhapson algorithm; Newton-Rhapson method; Newton-Rapson algorithm; Newtonian iteration; Newton-Raphson Method; Newton's Method; Newton iteration; Newton's iteration; Newton-Raphson iteration; Newton–Raphson; Newton Rhapson; Newton-Rhapson; Newton–Raphson method; Newton Raphson; Newton raphson method; Newton Raphson Method; Newton–Raphson Method; Newton Method; Raphson Method; Raphson's Method; The Newton–Raphson method; The Newton method; The Raphson method; Newton–Raphson iteration; Newton s method; The Newton Raphson Method; Newton's method for finding a root; The Newton-Raphson method; Solving nonlinear systems of equations using Newton's method; Solving systems of equations using Newton's method; Multidimensional Newton's method; Newton-Raphson formula

Newton-Raphson iteration         
<algorithm> An iterative algorithm for solving equations. Given an equation, f x = 0 and an initial approximation, x(0), a better approximation is given by: x(i+1) = x(i) - f(x(i)) / f'(x(i)) where f'(x) is the first derivative of f, df/dx. Newton-Raphson iteration is an example of an {anytime algorithm} in that each approximation is no worse than the previous one. (2007-06-19)
Newton's method         
Newton's method         
In numerical analysis, Newton's method, also known as the NewtonRaphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a single-variable function defined for a real variable , the function's derivative , and an initial guess for a root of .

Википедия

Newton's method

In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a single-variable function f defined for a real variable x, the function's derivative f, and an initial guess x0 for a root of f. If the function satisfies sufficient assumptions and the initial guess is close, then

x 1 = x 0 f ( x 0 ) f ( x 0 ) {\displaystyle x_{1}=x_{0}-{\frac {f(x_{0})}{f'(x_{0})}}}

is a better approximation of the root than x0. Geometrically, (x1, 0) is the intersection of the x-axis and the tangent of the graph of f at (x0, f(x0)): that is, the improved guess is the unique root of the linear approximation at the initial point. The process is repeated as

x n + 1 = x n f ( x n ) f ( x n ) {\displaystyle x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}}

until a sufficiently precise value is reached. The number of correct digits roughly doubles with each step. This algorithm is first in the class of Householder's methods, succeeded by Halley's method. The method can also be extended to complex functions and to systems of equations.